ATP5F1A Knockout cell line (A549)
Catalog Number: KO02233
Price: Online Inquiry
Catalog Number: KO02233
Price: Online Inquiry
Product Information | |
---|---|
Product Name | ATP5F1A Knockout cell line (A549) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:3~1:4 |
species | Human |
Gene | ATP5F1A |
Gene ID | 498 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90% F12K+10% FBS |
Parental Cell Line | A549 |
Quality Control | Genotype: ATP5F1A Knockout cell line (A549) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | ATP synthase F1 subunit alphaprovided by HGNC |
Also known as | OMR; ORM; ATPM; MOM2; ATP5A; hATP1; ATP5A1; MC5DN4; ATP5AL2; COXPD22; MC5DN4A; MC5DN4B; HEL-S-123m |
Gene Description | This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, using an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel consists of three main subunits (a, b, c). This gene encodes the alpha subunit of the catalytic core. Alternatively spliced transcript variants encoding the different isoforms have been identified. Pseudogenes of this gene are located on chromosomes 9, 2, and 16. [provided by RefSeq, Mar 2012] |
Expression | Ubiquitous expression in heart (RPKM 367.9), kidney (RPKM 254.5) and 25 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.