Synthetic Biology
Strain Engineering for Ethylene

Strain Engineering for Ethylene

Home / Applications / Strain Engineering for C2 Platform Chemical / Strain Engineering for Ethylene
Strain Engineering for Ethylene

CD Biosynsis uses synthetic biology tools to help customers achieve heterologous expression of ethylene-forming enzymes in microorganisms and optimization of ethylene synthesis metabolic pathways. Based on our established synthetic biology platform, we are committed to exploring commercial applications of ethylene biosynthesis with our collaborators.

Advantages of Synthetic Biology-Driven Ethylene Production

Ethylene is an important plant hormone that is involved in regulating the development and maturation process of plants. Ethylene is widely used in industry and consumed in huge quantities. Currently, ethylene is mainly produced through petroleum cracking. However, in the process of petrochemical production of ethylene, each ton of ethylene produced releases 1.5-3.0 tons of carbon dioxide, which causes serious environmental pollution. Compared with traditional ethylene production, ethylene biosynthesis has the advantages of low input, high product purity, low carbon and environmental protection. Therefore, the development of ethylene biosynthesis pathways has become a hot topic in synthetic biology research.

Figure 1. Biosynthetic pathways of ethylene synthetic. (Cui Y, et al., 2022)Figure 1. Biosynthetic pathways of ethylene synthetic. (Cui Y, et al., 2022)

What We Provide

Metabolic Engineering

We used metabolic engineering tools to optimize the ethylene biosynthesis pathway to improve ethylene production.

Genetic Engineering

We use tools such as gene editing to regulate the expression of genes that play an important role in ethylene production to improve the efficiency of ethylene biosynthesis.

Deliverables

  • Efficient cell factory for ethylene production.
  • Ethylene.

How We Help

Development of Synthetic Biology Chassis for Ethylene Production

CD Biosynsis can construct plasmids containing genes encoding ethylene-forming enzymes to convert non-ethylene producing microorganisms into ethylene-producing microorganisms. We can help customers construct recombinant plasmids expressing ethylene-forming enzymes, and analyze the ability of microorganisms to synthesize ethylene. The following are microorganisms that have successfully achieved heterologous expression of ethylene-forming enzymes. If you would like to inquire about other microbial chassis for ethylene synthesis, please contact us directly. We look forward to working with you to develop new microbial chassis for ethylene production.

Escherichia coli Saccharomyces cerevisiae Trichoderma viride
Trichoderma reesei Synechocystis sp.

Photoautotrophic Production of Renewable Ethylene

Photoautotrophic production of ethylene is not affected by the carbohydrate starting material. We are able to achieve heterologous expression of ethylene-forming enzymes in photosynthetic cyanobacteria. Unlike other microorganisms that produce ethylene, photosynthetic cyanobacteria undergo a series of reactions driven by solar energy to produce ethylene directly from CO2.

Microbial Pathway Modifications

We are able to use genetic engineering tools to knock out relevant genes that play a disruptive role in ethylene biosynthesis based on a metabolic retargeting strategy. We help our customers select microbial strains with higher efficiency in ethylene synthesis through microbial metabolic pathway modifications.

Applications of Ethylene

CD Biosynsis can develop tailored tools and customized approaches to harness the power of synthetic biology to drive ethylene production and meet the needs of customers in a variety of industries.

  • As a ripening agent for fruits or vegetables.
  • Used as a chemical raw material for synthetic fiber, synthetic rubber, and plastic.
  • Used as standard gas for analytical instruments in petrochemical companies.
  • Used in pharmaceutical synthesis, and high-tech material synthesis.
  • Used in the synthesis of ethanol, ethylene oxide, ethylene glycol, acetaldehyde, acetic acid, etc.

Want to Learn More?

As a rapidly growing synthetic biology company, CD Biosynsis is committed to helping our customers meet the growing and evolving demand for bio-based chemical production. All of our deliverables will undergo a rigorous quality testing process to ensure the quality and reliability and can be delivered on time. If you are interested in our services or have any further questions, please do not hesitate to contact us.

Reference

  1. Cui Y, et al. Discovery of Five New Ethylene-Forming Enzymes for Clean Production of Ethylene in E. coli. Int J Mol Sci. 2022 Apr 19; 23(9): 4500.
Please note that all services are for research use only. Not intended for any clinical use.

Synthetic Biology Applications

Online Inquiry