KCNQ1 Knockout cell line (HCT 116)
Catalog Number: KO06072
Price: Online Inquiry
Catalog Number: KO06072
Price: Online Inquiry
Product Information | |
---|---|
Product Name | KCNQ1 Knockout cell line (HCT 116) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:2~1:4 |
species | Human |
Gene | KCNQ1 |
Gene ID | 3784 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%McCOYs 5A+10% FBS |
Parental Cell Line | HCT 116 |
Quality Control | Genotype: KCNQ1 Knockout cell line (HCT 116) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | potassium voltage-gated channel subfamily Q member 1provided by HGNC |
Also known as | LQT; RWS; WRS; LQT1; SQT2; ATFB1; ATFB3; JLNS1; KCNA8; KCNA9; Kv1.9; Kv7.1; KVLQT1 |
Gene Description | This gene encodes a voltage-gated potassium channel required for repolarization phase of the cardiac action potential. This protein can form heteromultimers with two other potassium channel proteins, KCNE1 and KCNE3. Mutations in this gene are associated with hereditary long QT syndrome 1 (also known as Romano-Ward syndrome), Jervell and Lange-Nielsen syndrome, and familial atrial fibrillation. This gene exhibits tissue-specific imprinting, with preferential expression from the maternal allele in some tissues, and biallelic expression in others. This gene is located in a region of chromosome 11 amongst other imprinted genes that are associated with Beckwith-Wiedemann syndrome (BWS), and itself has been shown to be disrupted by chromosomal rearrangements in patients with BWS. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Aug 2011] |
Expression | Broad expression in adrenal (RPKM 44.1), thyroid (RPKM 34.9) and 16 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.