DYRK1A Knockout cell line (HeLa)
Catalog Number: KO00308
Price: Online Inquiry
Catalog Number: KO00308
Price: Online Inquiry
Product Information | |
---|---|
Product Name | DYRK1A Knockout cell line (HeLa) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:3~1:6 |
species | Human |
Gene | DYRK1A |
Gene ID | 1859 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%DMEM+10% FBS |
Parental Cell Line | HeLa |
Quality Control | Genotype: DYRK1A Knockout cell line (HeLa) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | dual specificity tyrosine phosphorylation regulated kinase 1Aprovided by HGNC |
Also known as | MNB; DYRK; HP86; MNBH; MRD7; DYRK1 |
Gene Description | This gene encodes a member of the Dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family. This member contains a nuclear targeting signal sequence, a protein kinase domain, a leucine zipper motif, and a highly conservative 13-consecutive-histidine repeat. It catalyzes its autophosphorylation on serine/threonine and tyrosine residues. It may play a significant role in a signaling pathway regulating cell proliferation and may be involved in brain development. This gene is a homolog of Drosophila mnb (minibrain) gene and rat Dyrk gene. It is localized in the Down syndrome critical region of chromosome 21, and is considered to be a strong candidate gene for learning defects associated with Down syndrome. Alternative splicing of this gene generates several transcript variants differing from each other either in the 5' UTR or in the 3' coding region. These variants encode at least five different isoforms. [provided by RefSeq, Jul 2008] |
Expression | Ubiquitous expression in bone marrow (RPKM 11.6), testis (RPKM 9.5) and 25 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.