DPM2 Knockout cell line (HCT 116)
Catalog Number: KO02409
Price: Online Inquiry
Catalog Number: KO02409
Price: Online Inquiry
Product Information | |
---|---|
Product Name | DPM2 Knockout cell line (HCT 116) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:2~1:4 |
species | Human |
Gene | DPM2 |
Gene ID | 8818 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%McCOYs 5A+10% FBS |
Parental Cell Line | HCT 116 |
Quality Control | Genotype: DPM2 Knockout cell line (HCT 116) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | dolichyl-phosphate mannosyltransferase subunit 2, regulatoryprovided by HGNC |
Also known as | CDG1U |
Gene Description | Dolichol-phosphate mannose (Dol-P-Man) serves as a donor of mannosyl residues on the lumenal side of the endoplasmic reticulum (ER). Lack of Dol-P-Man results in defective surface expression of GPI-anchored proteins. Dol-P-Man is synthesized from GDP-mannose and dolichol-phosphate on the cytosolic side of the ER by the enzyme dolichyl-phosphate mannosyltransferase. The protein encoded by this gene is a hydrophobic protein that contains 2 predicted transmembrane domains and a putative ER localization signal near the C terminus. This protein associates with DPM1 in vivo and is required for the ER localization and stable expression of DPM1 and also enhances the binding of dolichol-phosphate to DPM1. [provided by RefSeq, Jul 2008] |
Expression | Ubiquitous expression in stomach (RPKM 13.1), thyroid (RPKM 12.2) and 25 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.