TMEM165 Knockout cell line (HCT 116)
Catalog Number: KO20703
Price: Online Inquiry
Catalog Number: KO20703
Price: Online Inquiry
Product Information | |
---|---|
Product Name | TMEM165 Knockout cell line (HCT 116) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:2~1:4 |
species | Human |
Gene | TMEM165 |
Gene ID | 55858 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%McCOYs 5A+10% FBS |
Parental Cell Line | HCT 116 |
Quality Control | Genotype: TMEM165 Knockout cell line (HCT 116) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | transmembrane protein 165provided by HGNC |
Also known as | FT27; GDT1; CDG2K; TPARL; TMPT27; SLC64A1 |
Gene Description | This gene encodes a predicted transmembrane protein with a perinuclear Golgi-like distribution in fibroblasts. Mutations in this gene are associated with the autosomal recessive disorder congenital disorder of glycosylation, type IIk. Knockdown of this gene's expression causes decreased sialylation in HEK cells and suggests this gene plays a role in terminal Golgi glycosylation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Jul 2012] |
Expression | Ubiquitous expression in urinary bladder (RPKM 19.0), gall bladder (RPKM 17.4) and 25 other tissues See more |
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.