ERCC6L Knockout cell line (HeLa)
Catalog Number: KO00200
Price: Online Inquiry
Catalog Number: KO00200
Price: Online Inquiry
Product Information | |
---|---|
Product Name | ERCC6L Knockout cell line (HeLa) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:3~1:6 |
species | Human |
Gene | ERCC6L |
Gene ID | 54821 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%DMEM+10% FBS |
Parental Cell Line | HeLa |
Quality Control | Genotype: ERCC6L Knockout cell line (HeLa) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | ERCC excision repair 6 like, spindle assembly checkpoint helicaseprovided by HGNC |
Also known as | PICH; RAD26L |
Gene Description | This gene encodes a member of the SWItch/Sucrose Non-Fermentable (SWI/SNF2) family of proteins, and contains a SNF2-like ATPase domain and a PICH family domain. One distinguishing feature of this SWI/SNF protein family member is that during interphase, the protein is excluded from the nucleus, and only associates with chromatin after the nuclear envelope has broken down. This protein is a DNA translocase that is thought to bind double-stranded DNA that is exposed to stretching forces, such as those exerted by the mitotic spindle. This protein associates with ribosomal DNA and ultra-fine DNA bridges (UFBs), fine structures that connect sister chromatids during anaphase at some sites such as fragile sites, telomeres and centromeres. This gene is required for the faithful segregation of sister chromatids during mitosis, and the ATPase activity of this protein required for the resolution of UFBs before cytokinesis. [provided by RefSeq, May 2017] |
Expression | Broad expression in lymph node (RPKM 1.5), bone marrow (RPKM 1.3) and 18 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.