SLC22A18 Knockout cell line (HCT 116)
Catalog Number: KO07120
Price: Online Inquiry
Catalog Number: KO07120
Price: Online Inquiry
Product Information | |
---|---|
Product Name | SLC22A18 Knockout cell line (HCT 116) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:2~1:4 |
species | Human |
Gene | SLC22A18 |
Gene ID | 5002 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%McCOYs 5A+10% FBS |
Parental Cell Line | HCT 116 |
Quality Control | Genotype: SLC22A18 Knockout cell line (HCT 116) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | solute carrier family 67 member 1provided by HGNC |
Also known as | HET; ITM; BWR1A; IMPT1; TSSC5; ORCTL2; BWSCR1A; SLC22A18; SLC22A1L; p45-BWR1A |
Gene Description | This gene is one of several tumor-suppressing subtransferable fragments located in the imprinted gene domain of 11p15.5, an important tumor-suppressor gene region. Alterations in this region have been associated with the Beckwith-Wiedemann syndrome, Wilms tumor, rhabdomyosarcoma, adrenocortical carcinoma, and lung, ovarian, and breast cancer. This gene is imprinted, with preferential expression from the maternal allele. Mutations in this gene have been found in Wilms' tumor and lung cancer. This protein may act as a transporter of organic cations, and have a role in the transport of chloroquine and quinidine-related compounds in kidney. Several alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Oct 2015] |
Expression | Broad expression in duodenum (RPKM 18.6), small intestine (RPKM 17.1) and 21 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.