RBM23 Knockout cell line (A549)
Catalog Number: KO14673
Price: Online Inquiry
Catalog Number: KO14673
Price: Online Inquiry
Product Information | |
---|---|
Product Name | RBM23 Knockout cell line (A549) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:3~1:4 |
species | Human |
Gene | RBM23 |
Gene ID | 55147 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90% F12K+10% FBS |
Parental Cell Line | A549 |
Quality Control | Genotype: RBM23 Knockout cell line (A549) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | RNA binding motif protein 23provided by HGNC |
Also known as | PP239; RNPC4; CAPERbeta |
Gene Description | This gene encodes a member of the U2AF-like family of RNA binding proteins. This protein interacts with some steroid nuclear receptors, localizes to the promoter of a steroid- responsive gene, and increases transcription of steroid-responsive transcriptional reporters in a hormone-dependent manner. It is also implicated in the steroid receptor-dependent regulation of alternative splicing. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008] |
Expression | Ubiquitous expression in thyroid (RPKM 14.7), ovary (RPKM 12.8) and 25 other tissues See more |
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.