SIGMAR1 Knockout cell line(A549)
Catalog Number: KO00781
Price: Online Inquiry
                        Catalog Number: KO00781
Price: Online Inquiry
| Product Information | |
|---|---|
| Product Name | SIGMAR1 Knockout cell line(A549) | 
| specification | 1*10^6 | 
| Storage and transportation | Dry ice preservation/T25 live cell transportation. | 
| Cell morphology | Epithelioid, adherent cell | 
| Passage ratio | 1:3~1:4 | 
| species | Human | 
| Gene | SIGMAR1 | 
| Gene ID | 10280 | 
| Build method | Electric rotation method / virus method | 
| Mycoplasma testing | Negative | 
| Cultivation system | 90% F12K+10% FBS | 
| Parental Cell Line | A549 | 
| Quality Control | Genotype: SIGMAR1 Knockout cell line(A549) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. | 
| Gene Information | |
|---|---|
| Gene Official Full Name | sigma non-opioid intracellular receptor 1provided by HGNC | 
| Also known as | SRBP; ALS16; DSMA2; HMNR2; OPRS1; SR-BP; SIG-1R; SR-BP1; sigma1R; hSigmaR1 | 
| Gene Description | This gene encodes a receptor protein that interacts with a variety of psychotomimetic drugs, including cocaine and amphetamines. The receptor is believed to play an important role in the cellular functions of various tissues associated with the endocrine, immune, and nervous systems. As indicated by its previous name, opioid receptor sigma 1 (OPRS1), the product of this gene was erroneously thought to function as an opioid receptor; it is now thought to be a non-opioid receptor. Mutations in this gene has been associated with juvenile amyotrophic lateral sclerosis 16. Alternative splicing of this gene results in transcript variants encoding distinct isoforms. [provided by RefSeq, Aug 2013] | 
| Expression | Ubiquitous expression in liver (RPKM 44.6), duodenum (RPKM 22.5) and 25 other tissues See more | 
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
						    			Cas9 Protein
						    			Cas9 mRNA sgRNA
						    			Cas9 Plasmid
						    			Cas9 Virus
						    	A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
						    	
						    		KO Strategy Design
						    		CRISPR Plasmid/Lentiviral Vector Construction
						    		Lentiviral Packaging
						    		Cell Transfection/Lentiviral Infection
						    		Drug Selection
						    		Cell Cryopreservation
						    		Quality Control
						    		Sequencing Validation
						    		Monoclonal Cell Line Generation
						    		Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
| 
								 There is no product in your cart.  | 
						
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.