NPC1L1 Knockout cell line (HEK293)
Catalog Number: KO01946
Price: Online Inquiry
Catalog Number: KO01946
Price: Online Inquiry
Product Information | |
---|---|
Product Name | NPC1L1 Knockout cell line (HEK293) |
specification | 1*10^6 |
Storage and transportation | Dry ice preservation/T25 live cell transportation. |
Cell morphology | Epithelioid, adherent cell |
Passage ratio | 1:3~1:6 |
species | Human |
Gene | NPC1L1 |
Gene ID | 29881 |
Build method | Electric rotation method / virus method |
Mycoplasma testing | Negative |
Cultivation system | 90%DMEM+10% FBS |
Parental Cell Line | HEK293 |
Quality Control | Genotype: NPC1L1 Knockout cell line (HEK293) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. |
Gene Information | |
---|---|
Gene Official Full Name | NPC1 like intracellular cholesterol transporter 1provided by HGNC |
Also known as | LDLCQ7; NPC11L1; SLC65A2 |
Gene Description | The protein encoded by this gene is a multi-pass membrane protein. It contains a conserved N-terminal Niemann-Pick C1 (NPC1) domain and a putative sterol-sensing domain (SSD) which includes a YQRL motif functioning as a plasma membrane to trans-Golgi network transport signal in other proteins. This protein takes up free cholesterol into cells through vesicular endocytosis and plays a critical role in the absorption of intestinal cholesterol. It also has the ability to transport alpha-tocopherol (vitamin E). The drug ezetimibe targets this protein and inhibits the absorption of intestinal cholesterol and alpha-tocopherol. In addition, this protein may play a critical role in regulating lipid metabolism. Polymorphic variations in this gene are associated with plasma total cholesterol and low-density lipoprotein cholesterol (LDL-C) levels and coronary heart disease (CHD) risk. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009] |
Expression | Biased expression in duodenum (RPKM 24.2), small intestine (RPKM 22.9) and 2 other tissues See more |
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
Cas9 Protein
Cas9 mRNA sgRNA
Cas9 Plasmid
Cas9 Virus
A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
KO Strategy Design
CRISPR Plasmid/Lentiviral Vector Construction
Lentiviral Packaging
Cell Transfection/Lentiviral Infection
Drug Selection
Cell Cryopreservation
Quality Control
Sequencing Validation
Monoclonal Cell Line Generation
Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
There is no product in your cart. |
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.