ATP1B2 Knockout cell line (HEK293)
Catalog Number: KO07547
Price: Online Inquiry
                        Catalog Number: KO07547
Price: Online Inquiry
| Product Information | |
|---|---|
| Product Name | ATP1B2 Knockout cell line (HEK293) | 
| specification | 1*10^6 | 
| Storage and transportation | Dry ice preservation/T25 live cell transportation. | 
| Cell morphology | Epithelioid, adherent cell | 
| Passage ratio | 1:3~1:6 | 
| species | Human | 
| Gene | ATP1B2 | 
| Gene ID | 482 | 
| Build method | Electric rotation method / virus method | 
| Mycoplasma testing | Negative | 
| Cultivation system | 90%DMEM+10% FBS | 
| Parental Cell Line | HEK293 | 
| Quality Control | Genotype: ATP1B2 Knockout cell line (HEK293) >95% viability before freezing. All cells were tested and found to be free of bacterial, viruses,mycoplasma and other toxins. | 
| Gene Information | |
|---|---|
| Gene Official Full Name | ATPase Na+/K+ transporting subunit beta 2provided by HGNC | 
| Also known as | AMOG | 
| Gene Description | The protein encoded by this gene belongs to the family of Na+/K+ and H+/K+ ATPases beta chain proteins, and to the subfamily of Na+/K+ -ATPases. Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane. The glycoprotein subunit of Na+/K+ -ATPase is encoded by multiple genes. This gene encodes a beta 2 subunit. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Dec 2014] | 
| Expression | Biased expression in brain (RPKM 120.9) and ovary (RPKM 11.3) See more | 
We develop gene knockout solutions tailored to customer requirements and the condition of the target gene.
						    			Cas9 Protein
						    			Cas9 mRNA sgRNA
						    			Cas9 Plasmid
						    			Cas9 Virus
						    	A – Exon KO
gRNAs are designed in the introns flanking the exon, targeting non-multiple-of-3 base deletions in the exon, resulting in frameshift mutations.
B - Frameshift KO
gRNAs are designed within the exon, creating non-multiple-of-3 base deletions to induce frameshift mutations.
C - Complete KO
The entire gene coding sequence is deleted, achieving large-scale knockout effects.
						    	
						    		KO Strategy Design
						    		CRISPR Plasmid/Lentiviral Vector Construction
						    		Lentiviral Packaging
						    		Cell Transfection/Lentiviral Infection
						    		Drug Selection
						    		Cell Cryopreservation
						    		Quality Control
						    		Sequencing Validation
						    		Monoclonal Cell Line Generation
						    		Pool Efficiency Validation
Please note that all services are for research use only. Not intended for any clinical use.
If your question is not addressed through these resources, you can fill out the online form below and we will answer your question as soon as possible.
| 
								 There is no product in your cart.  | 
						
CD Biosynsis is a leading customer-focused biotechnology company dedicated to providing high-quality products, comprehensive service packages, and tailored solutions to support and facilitate the applications of synthetic biology in a wide range of areas.